Ascarosides coordinate the dispersal of a plant-parasitic nematode with the metamorphosis of its vector beetle
نویسندگان
چکیده
Insect vectors are required for the transmission of many species of parasitic nematodes, but the mechanisms by which the vectors and nematodes coordinate their life cycles are poorly understood. Here, we report that ascarosides, an evolutionarily conserved family of nematode pheromones, are produced not only by a plant-parasitic nematode, but also by its vector beetle. The pinewood nematode and its vector beetle cause pine wilt disease, which threatens forest ecosystems world-wide. Ascarosides secreted by the dispersal third-stage nematode LIII larvae promote beetle pupation by inducing ecdysone production in the beetle and up-regulating ecdysone-dependent gene expression. Once the beetle develops into the adult stage, it secretes ascarosides that attract the dispersal fourth-stage nematode LIV larvae, potentially facilitating their movement into the beetle trachea for transport to the next pine tree. These results demonstrate that ascarosides play a key role in the survival and spread of pine wilt disease.
منابع مشابه
Chemical Signals Synchronize the Life Cycles of a Plant-Parasitic Nematode and Its Vector Beetle
The pinewood nematode Bursaphelenchus xylophilus has caused severe damage to pine forests in large parts of the world [1-4]. Dispersal of this plant-parasitic nematode occurs when the nematode develops into the dispersal fourth larval stage (LIV) upon encountering its insect vector, the Monochamus pine sawyer beetle, inside an infected pine tree [5-9]. Here, we show that LIV formation in B. xyl...
متن کاملInterspecific Nematode Signals Regulate Dispersal Behavior
BACKGROUND Dispersal is an important nematode behavior. Upon crowding or food depletion, the free living bacteriovorus nematode Caenorhabditis elegans produces stress resistant dispersal larvae, called dauer, which are analogous to second stage juveniles (J2) of plant parasitic Meloidogyne spp. and infective juveniles (IJ)s of entomopathogenic nematodes (EPN), e.g., Steinernema feltiae. Regulat...
متن کاملConserved nematode signalling molecules elicit plant defenses and pathogen resistance
Plant-defense responses are triggered by perception of conserved microbe-associated molecular patterns (MAMPs), for example, flagellin or peptidoglycan. However, it remained unknown whether plants can detect conserved molecular patterns derived from plant-parasitic animals, including nematodes. Here we show that several genera of plant-parasitic nematodes produce small molecules called ascarosi...
متن کاملAscaroside Signaling Is Widely Conserved among Nematodes
BACKGROUND Nematodes are among the most successful animals on earth and include important human pathogens, yet little is known about nematode pheromone systems. A group of small molecules called ascarosides has been found to mediate mate finding, aggregation, and developmental diapause in Caenorhabditis elegans, but it is unknown whether ascaroside signaling exists outside of the genus Caenorha...
متن کاملReport of five species of plant parasitic nematodes associated with hawthorn forest trees in western Iran
Z, Bazgir E, Naghavi A (2020) Report of five species of plant parasitic nematodes associated with hawthorn forest trees in western Iran. Plant Pathology Science 9(1):16-30. DOI: 10.2982/PPS.9.1.16 Introduction: The Hoplolaimidae family is one of the largest and economically most important families of the order/ infraorder Tylenchida / Tylenchomorpha. The members of this family spread all over ...
متن کامل